
The “WXSock” WIL Extender
for Windows Sockets

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 1 11/17/22



Dial-Up Networking
Commands

The Dial-Up Networking (DUN) commands let your modem dial an Internet 
Service Provider (ISP) without having to respond to the “Connect To” dialog, 
which you normally see when you run an Internet program such as a web 
browser.

HTTP Commands
HTTP (short for “Hyper-Text Transfer Protocol”) is the protocol used to 
request files from a web server.

When a web browser needs to get a file from a web server, the client app 
takes the URL that the user specified and extracts the server name and file’s 
pathname. Then it connects to the server and requests the file. The server 
then sends back the file, along with several lines of header information which
the browser uses to determine how to display the data (as an HTML page, a 
GIF graphic, etc).

You can act like a web browser with the HTTPRecvText function.

When a user fills out a form on a web page, it gets sent to the server in one 
of three ways, depending on the METHOD clause in the form’s <form> tag: 
GET, POST, and MAILTO.

In the GET method, the browser collects the data from the various fields into 
one long string (in a format called “urlencoded”) and pastes it onto the end of 
a URL specifying a “CGI” script located on the server computer. The browser 
then sends a “GET” request to the web server, as if it was just requesting 
another file to display. But in this case the server passes the query string on 
to the CGI program, which decodes the query string, processes the request, 
creates an HTML file on the fly, and sends the results back to the browser. 
(This is the page you see after you hit the “Submit” button that says 
something like “This form successfully completed…” or else shows you the 
search results you asked for.)

The GET method is used only for short forms, such as most search engines. 
Most servers truncate the query string to 255 characters.

The POST method is somewhat similar to a GET. The main thing is that there
is no limit at all to the length of the query string. More and more CGI 
programmers are creating their forms with the POST method and ignoring 
GET altogether.

Either way, you can mimic a user submitting a web form by calling 
HTTPRecvQuery.

If you want a caller to your website to be able to fill out a form but your 
website can’t handle CGI scripting, you can create a “METHOD=MAILTO” 
form on your web page that simply creates an email message from the 

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 2 11/17/22



urlencoded query string & mails it to your mailbox. These messages will have
a line in the header that says “Content-Type: application/x-www-form-
urlencoded”. The sample ScanMail.wbt script shows how you can use the 
POP3 & URLDecode functions to check your mailbox and process these 
messages automatically.

POP3 Commands
Checking your mailbox for incoming mail is accomplished on the Internet via 
“Post-Office Protocol v3”, or POP3.

To check your mailbox you must first start a POP3 session with your mail 
server by calling P3Open. The mail server name is usually the same as you 
would use to send mail via the SMTP commands – i.e. “mail.nerds-r-us.com”.

With the POP3 session started, you can query the number of messages in 
your mailbox with P3Count; Look at the first n lines with P3Peek, download 
the whole message with P3RecvText, then delete the messages from the 
server with P3Delete. When you’re finished, call P3Close to close the POP3 
session.

SMTP Commands
Simple Mail Transport Protocol (SMTP) is the protocol used to send outgoing
mail through the Internet.

To send mail, you must specify a mail server. If you use an Internet Service 
Provider, the mail server name is usually the same as your ISP’s domain 
name with a prefix of “mail.”. (For example, nerds-r-us.com probably uses 
“mail.nerds-r-us.com”.) They probably told you this information when you first
signed up with the ISP, since all mail programs require it.

Checking your mailbox for incoming mail is more complicated, and requires a
different protocol called “POP3”. Hence our P3xxx commands.

Sockets Commands
Windows Sockets is the underlying system that lets you communicate over 
the Internet (or over any network that supports TCP/IP).

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 3 11/17/22



WXSock Command
Reference

DUNConnect
Dials up an Internet host, without making you respond to the “Connect to” 
dialog.

Syntax:
nConn = DUNConnect (sHost)

Parameters:
(s) dialupname The Internet host to dial up, such as returned from 

DUNItemize. (This is the descriptive name the user 
would see in the “Connect To” dialog, not the actual 
domain name.)

Returns:
(i) A handle that identifies the connection, or @FALSE 

if error. If you’re already connected to this host, then 
this handle identifies the existing connection.

SGetLastErr():
@SOK Dialed up the specified host successfully.
@SAlready The dialup is already connected. The return value 

identifies the existing connection.
@SErrBusy Line was busy.
@SErrNoAnswer No answer.
@SErrVoice A human answered.
@SErrNotFound Unknown host name specified.
600..750 Remote Access Service error code (see Appx. B).

See Also:
DUNItemize, DUNDisconnect

DUNDisconnect
Hangs up a specified dial-up Internet connection, or all existing connections.

Syntax:
nRet = DUNDisconnect (nConn)

Parameters:
(i) connection The dial-up connection handle to hang up on (as 

returned from DUNConnect), or 0 to hang up on all 
open connections.

Returns:
(i) @TRUE if OK, else @FALSE if there was an error.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 4 11/17/22



SGetLastErr():
@SOK Hung up the host(s) successfully.
@SErrParam Unknown connection handle specified.
600..750 Remote Access Service error code (see Appx. B).

See Also:
DUNConnect

DUNGetPWNT3
Gets the current dial-up networking password under Windows NT v3.x. 

Syntax:
sPW = DUNGetPWNT3 (sHost)

Returns:
(s) The dial-up host whose password to get.

This password is only used by WXSock when running under Windows NT 
v3.x, and is saved in encrypted form in the Registry. When running under 
Windows 95, WXSock uses the password that was entered in the Windows 
Control Panel.

SGetLastErr():
@SOK Found the password successfully.

See Also:
DUNSetPWNT3

DUNItemize
Creates a list of all the valid Dial-Up Networking hosts. These are the ones 
the user normally chooses from when they connect to the Internet via the 
“Connect To” dialog.

Syntax:
sHosts = DUNItemize ()

Returns:
(s) A tab-delimited list of dial-up hosts.

SGetLastErr():
@SOK Created the list successfully.
600..750 Remote Access Service error code (see Appx. B).

See Also:
DUNConnect

DUNSetPWNT3
Changes the dial-up networking password under Windows NT v3.x. 

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 5 11/17/22



Syntax:
sPW = DUNSetPWNT3 (sHost, sNewPW)

Returns:
(s) The dial-up host whose password to change.
(s) The new password.

This password is only used by WXSock when running under Windows NT 
v3.x, and is saved in encrypted form in the Registry. When running under 
Windows 95, WXSock uses the password that was entered in the Windows 
Control Panel.

SGetLastErr():
@SOK Changed the password successfully.

See Also:
DUNGetPWNT3

HTTPGetAnchor
Extracts the anchor name from an HTTP URL.

Syntax:
sAnchor = HTTPGetAnchor (sURL, sDefault) 

Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.
(s) default The default anchor name to use.

Returns:
(s) The full anchor name if found, else the default.

When you click on a link in a web page that looks like 
“http://www.server.com/anotherpg#theanchor”, it will take you directly to the 
middle of another page. That position is called an “anchor.” This corresponds 
to an <ISINDEX> tag somewhere in the target HTML page.

This function would extract “theanchor” from the URL above.

See Also:
HTTPGetDir, HTTPGetFile, HTTPGetPath, HTTPGetServer, 
HTTPRecvQuery, HTTPRecvText, URLGetScheme

HTTPGetDir
Extracts the full directory path from an HTTP URL.

Syntax:
sDir = HTTPGetDir (sURL, sDefault) 

Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 6 11/17/22



(s) default The default directory path to use.

Returns:
(s) The full directory path if found, else the default.

See Also:
HTTPGetAnchor, HTTPGetFile, HTTPGetPath, HTTPGetServer, 
HTTPRecvQuery, HTTPRecvText, URLGetScheme

HTTPGetFile
Extracts the filename from an HTTP URL.

Syntax:
sFile = HTTPGetFile (sURL, sDefault) 

Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.
(s) default The default filename to use.

Returns:
(s) The filename if found, else the default.

See Also:
HTTPGetAnchor, HTTPGetDir, HTTPGetPath, HTTPGetServer, 
HTTPRecvQuery, HTTPRecvText, URLGetScheme

HTTPGetPath
Extracts the file’s full pathname from an HTTP URL.

Syntax:
sPath = HTTPGetPath (sURL, sDefault) 

Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.
(s) default The default directory path for the file.

Returns:
(s) The full pathname of the file.

See Also:
HTTPGetAnchor, HTTPGetDir, HTTPGetFile, HTTPGetServer, 
HTTPRecvQuery, HTTPRecvText, URLGetScheme

HTTPGetQuery
Extracts a CGI query string from an HTTP URL.

Syntax:
sQuery = HTTPGetQuery (sURL, sDefault) 

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 7 11/17/22



Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.
(s) default The default query string to use.

Returns:
(s) The full query string if found, else the default.

When you fill out a form in a web browser, it builds a long URL string 
consisting of a CGI script filename on the web server, followed by a “?” and 
all the data you filled out on the form in “urlencoded format”. This function 
extracts just that data from the URL.

See Also:
HTTPGetAnchor, HTTPGetDir, HTTPGetFile, HTTPGetPath, 
HTTPGetServer, HTTPRecvQuery, HTTPRecvText, URLDecode, 
URLEncode, URLGetScheme

HTTPGetServer
Extracts the server’s domain name from an HTTP URL.

Syntax:
sServer = HTTPGetServer (sURL, sDefault) 

Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.
(s) default The default domain name to use.

Returns:
(s) The domain name if found, else the default.

See Also:
HTTPGetAnchor, HTTPGetDir, HTTPGetFile, HTTPGetPath, 
HTTPRecvQuery, HTTPRecvText, URLGetScheme

HTTPRecvQuery
Sends a GET or POST request to a CGI program on a web server and gets 
the response.

Parameters:
(s) server The web server where the CGI script is located.
(s) path The pathname of the CGI script on the server's 

computer.
(s) query The query string for the CGI script.
(i) maxsize Max chars of data to receive.
(i) flags Specify @HMethodGet or @HMethodPost (the 

default) depending on which type of web form 
method to simulate. “Or” this together with 
@HHeader if you want to receive the HTTP header 
lines as well as the data, else @HNoHeader (the 
default).

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 8 11/17/22



Returns:
(s) The CGI program’s output.

SGetLastErr():
@SOK Recieved the response OK.
@SErrNoConn Server closed the connection before sending 

anything back.
Other errors from SOpen, SConnect, SSendLine, or SRecvLine.

Each HTTP reply starts with several lines of header information and a blank 
line before the requested data. 

A standard CGI query string consists of one or more “name=value” pairs, 
each separated by “&”. If you’re simulating a user entering data in a web 
form, each name=value pair corresponds to a field on the form. The “name” 
part is the same as the NAME= field in the HTML code that defines the field, 
and the “value” part is the data the user entered.

NOTE: Before building up your query string, call URLEncode on each “value”
string, just in case there are spaces or punctuation marks in it. The CGI script
will get very confused if it’s not urlencoded first.

Before using this function to simulate a user filling out a web form, check the 
actual form you want to mimic & notice the METHOD= clause in its <form> 
tag. It should read either “METHOD=GET”, “METHOD=POST”, or 
“METHOD=MAILTO”. GET & POST correspond to a flag value of 
@HMethodGet & @HMethodPost. If it’s a MAILTO form, use SMTPSendText
to email the query as the body of the message.

See Also:
HTTPGetPath, HTTPGetServer, HTTPRecvText, URLEncode

HTTPRecvText
Downloads a text file from a web server.

Parameters:
(s) server The web server to get the file from.
(s) path The pathname of the file on the server's computer.
(i) maxsize Max size to receive.
(i) hdr too? @TRUE if you want to receive the HTTP header 

lines as well as the data, else @FALSE.

Returns:
(s) The file you requested, optionally with the HTTP 

header lines at the beginning.

SGetLastErr():
@SOK Recieved the file OK.
@SErrNoConn Server closed the connection before sending 

anything back.
Other errors from SOpen, SConnect, SSendLine, or SRecvLine.

Each HTTP reply starts with several lines of header information and a blank 
line before the requested data. 

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 9 11/17/22



A file that’s received from a web server is usually an HTML web page, but it 
could be any file you get when you click on a link in a web browser.

See Also:
HTTPGetAnchor, HTTPGetDir, HTTPGetFile, HTTPGetPath, 
HTTPGetServer, HTTPRecvQuery, URLDecode, URLGetScheme

P3Close
Closes a POP3 session.

Syntax:
bOK = P3Close (hPOP) 

Parameters:
(i) handle The POP3 session handle you got from P3Open.

Returns:
(i) @TRUE if it was closed OK, else @FALSE if an 

error.

SGetLastErr():
@SOK Disconnected OK.

P3Count
Counts the number of messages in your mailbox.

Syntax:
nMsgs = P3Count (hPOP) 

Parameters:
(i) handle The POP3 session handle you got from P3Open.

Returns:
(i) How many mail messages there are waiting for you, 

or 0 if there was an error. (You should check 
SGetLastErr() to make sure the return value is valid.)

SGetLastErr():
@SOK Got the information OK.
@P3ErrReply The mail server sent back an error message instead 

of the message count.
Other error codes from SSendLine, SRecvLine.

P3Delete
Deletes a message from your mailbox.

Syntax:
bOK = P3Delete (hPOP, nMsg) 

Parameters:
(i) handle The POP3 session handle you got from P3Open.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 10 11/17/22



(i) message Which message in your mailbox to delete. The 
message numbers start at 1.

Returns:
(number) @TRUE if it deleted the message OK, else @FALSE

if an error occurred.

SGetLastErr():
@SOK Deleted it OK.
Other error codes from SSendLine, SRecvLine.

P3GetReply
Gets the description part of the last POP3 reply code.

Syntax:
sReplyText = P3GetReply ()

Returns:
(s) The POP3 reply received after the last command we

sent it.
A POP3 server responds to a request with a line starting with either +OK or
-ERR, and usually including a description after it. This function just returns 
the description part. To find out if a P3xxx function call had an -ERR reply, 
check SLastErr() for @P3ErrReply.

See Also:
SGetLastErr

P3Open
Opens a session with a POP3 mail server.

Syntax:
bOK = P3Open (sMailServer, sUser, sPW) 

Parameters:
(s) server Your mail server. This is usually in the form of 

"mail.yourisp.com".
(s) user Your user name.
(s) PW Your password, if any. (This is the one you had to 

use when you logged on to the network.)

Returns:
(number) @TRUE if it started the session OK, else @FALSE if

an error or the password is wrong.

SGetLastErr():
@SOK Connected OK.
@SErrParam No POP3 server specified.
@P3ErrReply POP3 server sent back an error reply to one of our 

login commands.
Other error codes from SOpen, SConnect, SSendLine, SRecvLine.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 11 11/17/22



P3Peek
Reads the header & first few lines of a message in your mailbox.

Syntax:
sMsg = P3Peek (hPOP, nMsg) 

Parameters:
(i) handle The POP3 session handle you got from P3Open.
(i) message Which message in your mailbox to peek at. The 

message numbers start at 1.
(i) lines How many lines to retrieve.

Returns:
(s) The truncated message with all the header lines plus

as many lines of the body as you specified.

SGetLastErr():
@SOK Connected OK.
@SErrParam No mail server, from, or to address specified.
Other error codes from SSendLine, SRecvLine.

P3RecvText
Downloads a message from your mailbox.

Syntax:
sMsg = P3RecvText (hPOP, nMsg) 

Parameters:
(i) handle The POP3 session handle you got from P3Open.
(i) message Which message in your mailbox to download.The 

message numbers start at 1.
(i) maxsize Max size to receive. (This value must be less than 

65535, which is the total allowed for all strings in 
your WIL script. A good value would be 32767.)

Returns:
(s) The text of the message if OK, else NULL if error.

SGetLastErr():
@SOK Received it OK.
Other error codes from SRecvLine.

SByteOrder16
SByteOrder32
Converts a 16- or 32-bit binary number from network byte order to the PC’s 
byte order & vice versa.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 12 11/17/22



Syntax:
nData = SByteOrder16 (nData, nDirection)
nData = SByteOrder32 (nData, nDirection)

Parameters:
(i) number The binary number to translate.
(i) direction @SNet2PC - translates a number received from the 

net to the PC’s byte order. @SPC2Net - translates a 
number from the PC’s byte order to the network’s.

Returns:
(i) The translated number.

You normally don’t need to call these functions if you are just sending or 
receiving a value thru SSendNum8, SSendNum16, SSendNum32, 
SRecvNum8, SRecvNum16, or SRecvNum32. They all do the translation for 
you.

SClose
Closes a socket.

Syntax:
nRet = SClose (hSocket)

Parameters:
(i) socket The socket to close.

Returns:
(i) @TRUE if the socket was closed successfully, else 

@FALSE.

SGetLastErr():
@SOK Closed the socket OK.
10000..11004 Winsock error code (see Appendix A).

See Also:
SOpen

SConnect
Connects a socket to an Internet host & network service (i.e. “ftp”).

Syntax:
nRet = SConnect (hSocket, szHost, szService)

Parameters:
(i) socket Which socket to connect.
(s) hostaddr Which host to connect to. This can be either a 

symbolic host name like “myserv.com”, or a dotted-
decimal IP address like “192.123.456.1”.

(s) service The name of the service to connect this socket to, or
the service’s port number (ex: “time”, or “37”).
NOTE: To connect the socket to an http port, you 
must specify its port # (“80”) directly.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 13 11/17/22



Returns:
(i) @TRUE if everything’s OK, else @FALSE.

SGetLastErr():
@SOK Connected OK.
@SCancel User hit Cancel in the “Connect To” dialog, or 

unknown host name.
@SErrParam Unknown socket # specified.
@SErrService Unknown service name specified.
@SErrIPAddr Invalid IP dotted-decimal address specified.
@SErrHostName Unknown host name specified.
@SErrNoConn Host computer refused to connect, possibly because

it doesn’t support the requested service.
@SErrBusy Host computer too busy to connect.
10000..11003 Winsock error code (see Appendix A).

If you’re not already hooked up to an Internet Service Provider, this will bring 
up the “Connect To” dialog. If you want it to dial up without human 
intervention, you must call DUNConnect first.

If the server doesn’t connect within the global timeout # of seconds (default is
20), then SConnect will return @SErrNoConn. You can change this global 
timeout with SSetParam.

See Also:
SClose, DUNConnect, SOpen, SSetParam

SGetLastErr
Gets the last error generated by a WXSock extender function.

Syntax:
nErr = SGetLastErr ()

Returns:
(i) The result of the last Sxxx function. (See the specific

function description).

See Also:
P3GetReply

SGetParam
Gets a global WXSock parameter.

Syntax:
nValue = SGetParam (nParamID)

Parameters:
(i) paramID Which parameter to get. The only valid value is:

@SParTimeout - How many seconds to wait for a 
SConnect to connect to a server. The default is 20.

Returns:
(i) The value of the specified parameter.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 14 11/17/22



See Also:
SSetParam

SSetParam
Sets a global WXSock parameter.

Syntax:
nOldValue = SSetParam (nParamID, nNewValue)

Parameters:
(i) paramID Which parameter to set. The only valid value is:

@SParTimeout - How many seconds to wait for a 
SConnect to connect to a server. The default is 20.

(i) newvalue The new value of the parameter.

Returns:
(i) The previous value of the specified parameter.

See Also:
SGetParam

SMTPSendText
Sends an email message. This message must be text-only.

Syntax:
SMTPSendText (sMailSvr, sFrom, sTo, sSubject, sText)

Parameters:
(s) server Your mail server; i.e. "mail.nerds-r-us.com".
(s) from Your mail address; i.e. “myname@nerds-r-us.com”.
(s) to The recipient's mail address.
(s) subject A subject line. This can be "".
(s) text The message body.

Returns:
(number) @TRUE if the message was sent OK, else @FALSE

if an error or the user hit Ctrl+Break.

SGetLastErr():
@SOK Sent the message OK.
Other errors from SOpen, SConnect, SSendLine, or SRecvLine.

See Also:
P3xxx commands

SOK2Recv
If we received data from this socket now, would we get it immediately? 

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 15 11/17/22



Syntax:
bOK = SOK2Recv (hSocket, nSize)

Parameters:
(i) socket A handle specifying the socket to check.
(i) size How many bytes we want to receive.

Returns:
(i) @TRUE if an SRecvXXX command could be carried

out without waiting, else @FALSE if the WIL script 
would have to wait first.

SGetLastErr():
@SOK Determined the status OK.
10000..11004 Winsock error code from its recv function (see 

Appendix A).

The SRecvXXX functions all wait until this computer actually receives all the 
data the function is requesting. This function tells us if there is currently 
enough data in the receive queue to return immediately.

See Also:
SOpen, SConnect, SRecvXXX

SOK2Send
If we sent data thru this socket now, would it be sent immediately?

Syntax:
bOK = SOK2Send (hSocket)

Parameters:
(i) socket A handle specifying the socket to check.

Returns:
(i) @TRUE if SSendXXX command could be carried 

out without waiting, else @FALSE if the WIL script 
would have to wait.

SGetLastErr():
@SOK Determined the status OK.

The SSendXXX functions all wait until there is enough space available in this
computer’s send buffer to put the data we’re sending. This function tells us if 
there is currently enough space in the send queue to do it immediately.

See Also:
SOpen, SConnect, SSendXXX

SOpen
Creates a new stream (TCP) socket.

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 16 11/17/22



Syntax:
hSocket = SOpen ()

Returns:
(i) A handle specifying the socket that was created, or 

@FALSE if there was an error.

SGetLastErr():
@SOK The socket was created successfully.
@SErrWinsock Couldn’t initialize Winsock. WIL needs Winsock v1.1 

or higher.
@SErrSocket Error creating the socket.

See Also:
SConnect, SClose

When sending & receiving data to/from a remote host, your script can’t 
control how fast the process runs. The server could be slow in responding to 
your requests for data, or you may be pushing so much data out faster than 
the network can process it that your Winsock send buffer may fill up. In either
case the socket has to wait.

Standard Winsock programming recognizes two kinds of sockets: Blocking 
and non-blocking. If you create a socket as “blocking”, any send or receive 
calls you make will wait until all the data can be sent/received. This makes 
for by far the simplest code. However, if the server stops responding or the 
network seems hung up, the user can’t hit Ctrl+Break to “wake up” the 
application.

On the other hand, when a “non-blocking” socket can’t send or receive all the
data, it returns immediately with an error code telling the program to wait a 
bit. The program is expected to enter a loop and retry the call until the send 
or receive is successful, or else set up an event notification complete with 
callback function or dummy hidden window to receive Windows messages 
telling of the change in status.

WIL sockets are “psuedo-blocking”, and these give you the best of both 
worlds. As far as your script is concerned, any socket you create is a 
blocking socket—you can just call SRecvXXX or SSendXXX, and when they 
return they’ve either processed the data or there was some other error. But 
the user can still hit Ctrl+Break if the network seems hung up. For example:

<Open a socket & connect it to something>

nRet = SSendLine (hSocket, sCmd)
if (nRet==@FALSE)

Message (sTitle, “Error sending data!”)
goto Cancel

endif

sData = SRecvLine (hSocket)
nErr = SGetLastErr()
if (nRet<>@SOK)

Message (sTitle, “Error receiving data!”)
goto Cancel

endif

<Do something with sData>

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 17 11/17/22



; We’re thru with the socket, there was an error, or user
; hit Ctrl+Break during the operation. Just close it...
:Cancel
SClose (hSocket)
exit

SRecvBinary
Gets binary data from a socket into a binary data type. This must have been 
created with BinaryAlloc.

Syntax:
bOK = SRecvBinary (hSocket, hData, nMaxChars)

Parameters:
(i) socket A handle specifying the socket to get data from.
(i) blob A handle specifying the binary object that receives 

the data.
(i) size The number of characters to receive.

Returns:
(i) @TRUE if the data was received OK, else @FALSE 

if there was an error or not enough data ever came 
in.

SGetLastErr():
@SOK Received the data OK.
@SErrNoConn The server has already closed the connection.
10000..11004 Winsock error code (see Appendix A).

See Also:
SOpen, SConnect, SSendBinary, SRecvLine, SRecvNum8/16/32

SRecvLine
Gets a line of text from a socket, up to the first CR/LF.

Syntax:
sData = SRecvLine (hSocket, nMaxChars)

Parameters:
(i) socket A handle specifying the socket to get data from.
(i) maxsize The maximum characters to receive in one line. 

(This value must be less than 65535, which is the 
total allowed for all strings in your WIL script. A good 
value would be 32767.)

Returns:
(s) The next line of text in the receive buffer, with its 

trailing CR/LF stripped off.

SGetLastErr():
@SOK Received the data OK.
@SErrParam Max chars requested > 65535.
@SErrNoConn The server has already closed the connection.
10000..11004 Winsock error code (see Appendix A).

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 18 11/17/22



See Also:
SOpen, SConnect, SSendLine, SSendString

SRecvNum8
SRecvNum16
SRecvNum32
Gets numeric data from a socket. The result is then converted from network 
byte order to PC byte order for you.

Syntax:
nData = SRecvNum8 (hSocket)
nData = SRecvNum16 (hSocket)
nData = SRecvNum32(hSocket)

Parameters:
(i) socket The socket to get data from.

Returns:
(i) The next 1, 2, or 4 bytes of data received, expressed

as a signed 8-, 16-, or 32-bit number. (These are 
converted, if necessary, from network byte order to 
PC byte order.)

SGetLastErr():
@SOK Received the data OK.
@SErrNoConn The server has already closed the connection.
10000..11004 Winsock error code (see Appendix A).

See Also:
SOpen, SConnect, SSendNum8, SSendNum16, SSendNum32

SSendBinary
Sends binary data to a socket.

Syntax:
nRet = SSendBinary (hSocket, sData, nLen)

Parameters:
(i) socket A handle specifying the socket to send data to.
(i) blob The binary object to send.
(i) size How many bytes to send.

Returns:
(i) @TRUE if all the data was sent OK, else @FALSE if

there was an error.

SGetLastErr():
@SOK Sent the data OK.
10000..11004 Winsock error code (see Appendix A).

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 19 11/17/22



See Also:
SOpen, SConnect, SSendString, SSendNum8, SSendNum16, 

SSendNum32

SSendNum8
SSendNum16
SSendNum32
Sends an integer to a socket.

Syntax:
nRet = SSendNum8    (hSocket, nData)
nRet = SSendNum16 (hSocket, nData)
nRet = SSendNum32 (hSocket, nData)

Parameters:
(i) socket A handle specifying the socket to send data to.
(i) number The 1-, 2-, or 4-byte number to send. (This is 

converted, if necessary, from PC byte order to 
network byte order.)

Returns:
(i) @TRUE if all the data was sent OK, else @FALSE if

there was an error.

SGetLastErr():
@SOK Sent the data OK.
10000..11004 Winsock error code (see Appendix A).

See Also:
SOpen, SConnect, SSendBin, SSendString

SSendString
SSendLine
Sends a string to a socket. SSendLine() will first append a CR/LF on the end 
of the string if it isn’t already there.

Syntax:
nRet = SSendString (hSocket, sData)
nRet = SSendLine      (hSocket, sData)

Parameters:
(i) socket The socket to send data to.
(s) string The data to send.

Returns:
(i) @TRUE if all the data was sent OK, else @FALSE if

there was an error.

SGetLastErr():
@SOK Sent the data OK.
10000..11004 Winsock error code (see Appendix A).

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 20 11/17/22



See Also:
SOpen, SConnect, SSendBin, SSendNum8, SSendNum16, 

SSendNum32

URLDecode
Takes a string in urlencoded format and converts it to plain text.

Syntax:
sPlain = URLDecode (sQuery) 

Parameters:
(s) data The string to decode.

Returns:
(s) The string in plain text.

See Also:
URLEncode

URLEncode
Takes a plain text string and converts it to urlencoded format.

Syntax:
sData = URLEncode (sPlainText) 

Parameters:
(s) data The string to encode.

Returns:
(s) The string in urlencoded form.

When a web client (a browser for instance) sends a request to a CGI script 
running on a web server, the data is sent to the CGI program appended onto 
the end of a URL. In this format, there can’t be any spaces or control 
characters in the data that’s sent.

Because of this, you have to “urlencode” the data values you send. In 
urlencoding, spaces are turned into “+”s, and punctuation marks or control 
characters are “escaped” into a “%” and two hex digits.

If you want to simulate a user filling out a web form, you must call 
URLEncode for each data value you’re including in the query string.

Example:
sField1 = “My name”
sField2 = “My address, Apt. #c”
sField1 = URLEncode (sField1)
sField2 = URLEncode (sField2)
sQuery = “name=%sField1%&addr1=%sField2%”

At this point, sQuery would be “name=My+name&addr1=My+address
%2C+Apt.+%23c”

sPage = HTTPRecvQuery (“www.someserver.com”,
“\cgi-bin\formproc”, sQuery, 32767, @FALSE)

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 21 11/17/22



See Also:
URLDecode

URLGetScheme
Extracts the scheme from a URL. A fully-qualified URL comes in this syntax:

<scheme>:<details>
ex.: http://www.windowware.com/index.html

ftp://ftp.windowware.com/WinBatch/wbt32i.dll
mailto:morriew@windowware.com

Each scheme has its own syntax for the details part.

Syntax:
sScheme = HTTPGetScheme (sURL, sDefault) 

Parameters:
(s) URL The URL to parse. This can be a fully-qualified URL 

or relative.
(s) default The default scheme to use.

Returns:
(s) The URL’s scheme if found, else the default.

See Also:
HTTPGetAnchor, HTTPGetDir, HTTPGetFile, HTTPGetPath, 
HTTPGetQuery, HTTPGetServer, HTTPRecvQuery, HTTPRecvText

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 22 11/17/22



APPENDIX A: Winsock error
codes

10004 WSAEINTR
10009 WSAEBADF
10013 WSAEACCES
10014 WSAEFAULT
10022 WSAEINVAL
10024 WSAEMFILE
10035 WSAEWOULDBLOCK (SSend/SRecv - Gets translated to 
@SErrMustWait)
10036 WSAEINPROGRESS
10037 WSAEALREADY
10038 WSAENOTSOCK (SConnect - gets translated to @SErrSocket)
10039 WSAEDESTADDRREQ
10040 WSAEMSGSIZE
10041 WSAEPROTOTYPE
10042 WSAENOPROTOOPT
10043 WSAEPROTONOSUPPORT
10044 WSAESOCKTNOSUPPORT
10045 WSAEOPNOTSUPP
10046 WSAEPFNOSUPPORT
10047 WSAEAFNOSUPPORT
10048 WSAEADDRINUSE
10049 WSAEADDRNOTAVAIL
10050 WSAENETDOWN
10051 WSAENETUNREACH
10052 WSAENETRESET (SConnect - gets translated to @SErrNoConn)
10053 WSAECONNABORTED (SConnect - gets translated to 
@SErrNoConn)
10054 WSAECONNRESET
10055 WSAENOBUFS
10056 WSAEISCONN
10057 WSAENOTCONN
10058 WSAESHUTDOWN
10059 WSAETOOMANYREFS
10060 WSAETIMEDOUT (SConnect - gets translated to @SErrNoConn)
10061 WSAECONNREFUSED (SConnect - gets translated to @SErrBusy)
10062 WSAELOOP
10063 WSAENAMETOOLONG
10064 WSAEHOSTDOWN
10065 WSAEHOSTUNREACH
10066 WSAENOTEMPTY
10067 WSAEPROCLIM
10068 WSAEUSERS
10069 WSAEDQUOT
10070 WSAESTALE
10071 WSAEREMOTE
10091 WSASYSNOTREADY
10092 WSAVERNOTSUPPORTED

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 23 11/17/22



10093 WSANOTINITIALISED
10101 WSAEDISCON
11001 WSAHOST_NOT_FOUND
11002 WSATRY_AGAIN
11003 WSANO_RECOVERY
11004 WSANO_DATA (SConnect - gets translated to @SCancel)

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 24 11/17/22



APPENDIX. B: Dial-Up
Networking return codes

600 PENDING
601 ERROR_INVALID_PORT_HANDLE
602 ERROR_PORT_ALREADY_OPEN (DUNConnect - becomes 
@SAlready)
603 ERROR_BUFFER_TOO_SMALL (User has > 16 Dialups defined)
604 ERROR_WRONG_INFO_SPECIFIED
605 ERROR_CANNOT_SET_PORT_INFO
606 ERROR_PORT_NOT_CONNECTED
607 ERROR_EVENT_INVALID
608 ERROR_DEVICE_DOES_NOT_EXIST
609 ERROR_DEVICETYPE_DOES_NOT_EXIST
610 ERROR_BUFFER_INVALID
611 ERROR_ROUTE_NOT_AVAILABLE
612 ERROR_ROUTE_NOT_ALLOCATED
613 ERROR_INVALID_COMPRESSION_SPECIFIED
614 ERROR_OUT_OF_BUFFERS
615 ERROR_PORT_NOT_FOUND
616 ERROR_ASYNC_REQUEST_PENDING
617 ERROR_ALREADY_DISCONNECTING
618 ERROR_PORT_NOT_OPEN
619 ERROR_PORT_DISCONNECTED
620 ERROR_NO_ENDPOINTS
621 ERROR_CANNOT_OPEN_PHONEBOOK
622 ERROR_CANNOT_LOAD_PHONEBOOK
623 ERROR_CANNOT_FIND_PHONEBOOK_ENTRY (DUNConnect - 
becomes @SErrNotFound)
624 ERROR_CANNOT_WRITE_PHONEBOOK
625 ERROR_CORRUPT_PHONEBOOK
626 ERROR_CANNOT_LOAD_STRING
627 ERROR_KEY_NOT_FOUND
628 ERROR_DISCONNECTION
629 ERROR_REMOTE_DISCONNECTION
630 ERROR_HARDWARE_FAILURE
631 ERROR_USER_DISCONNECTION
632 ERROR_INVALID_SIZE
633 ERROR_PORT_NOT_AVAILABLE
634 ERROR_CANNOT_PROJECT_CLIENT
635 ERROR_UNKNOWN
636 ERROR_WRONG_DEVICE_ATTACHED
637 ERROR_BAD_STRING
638 ERROR_REQUEST_TIMEOUT
639 ERROR_CANNOT_GET_LANA
640 ERROR_NETBIOS_ERROR
641 ERROR_SERVER_OUT_OF_RESOURCES
642 ERROR_NAME_EXISTS_ON_NET
643 ERROR_SERVER_GENERAL_NET_FAILURE
644 WARNING_MSG_ALIAS_NOT_ADDED

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 25 11/17/22



645 ERROR_AUTH_INTERNAL
646 ERROR_RESTRICTED_LOGON_HOURS
647 ERROR_ACCT_DISABLED
648 ERROR_PASSWD_EXPIRED
649 ERROR_NO_DIALIN_PERMISSION
650 ERROR_SERVER_NOT_RESPONDING
651 ERROR_FROM_DEVICE
652 ERROR_UNRECOGNIZED_RESPONSE
653 ERROR_MACRO_NOT_FOUND
654 ERROR_MACRO_NOT_DEFINED
655 ERROR_MESSAGE_MACRO_NOT_FOUND
656 ERROR_DEFAULTOFF_MACRO_NOT_FOUND
657 ERROR_FILE_COULD_NOT_BE_OPENED
658 ERROR_DEVICENAME_TOO_LONG
659 ERROR_DEVICENAME_NOT_FOUND
660 ERROR_NO_RESPONSES
661 ERROR_NO_COMMAND_FOUND
662 ERROR_WRONG_KEY_SPECIFIED
663 ERROR_UNKNOWN_DEVICE_TYPE
664 ERROR_ALLOCATING_MEMORY
665 ERROR_PORT_NOT_CONFIGURED
666 ERROR_DEVICE_NOT_READY
667 ERROR_READING_INI_FILE
668 ERROR_NO_CONNECTION
669 ERROR_BAD_USAGE_IN_INI_FILE
670 ERROR_READING_SECTIONNAME
671 ERROR_READING_DEVICETYPE
672 ERROR_READING_DEVICENAME
673 ERROR_READING_USAGE
674 ERROR_READING_MAXCONNECTBPS
675 ERROR_READING_MAXCARRIERBPS
676 ERROR_LINE_BUSY
677 ERROR_VOICE_ANSWER
678 ERROR_NO_ANSWER
679 ERROR_NO_CARRIER
680 ERROR_NO_DIALTONE
681 ERROR_IN_COMMAND
682 ERROR_WRITING_SECTIONNAME
683 ERROR_WRITING_DEVICETYPE
684 ERROR_WRITING_DEVICENAME
685 ERROR_WRITING_MAXCONNECTBPS
686 ERROR_WRITING_MAXCARRIERBPS
687 ERROR_WRITING_USAGE
688 ERROR_WRITING_DEFAULTOFF
689 ERROR_READING_DEFAULTOFF
690 ERROR_EMPTY_INI_FILE
691 ERROR_AUTHENTICATION_FAILURE
692 ERROR_PORT_OR_DEVICE
693 ERROR_NOT_BINARY_MACRO
694 ERROR_DCB_NOT_FOUND
695 ERROR_STATE_MACHINES_NOT_STARTED
696 ERROR_STATE_MACHINES_ALREADY_STARTED
697 ERROR_PARTIAL_RESPONSE_LOOPING
698 ERROR_UNKNOWN_RESPONSE_KEY

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 26 11/17/22



699 ERROR_RECV_BUF_FULL
700 ERROR_CMD_TOO_LONG
701 ERROR_UNSUPPORTED_BPS
702 ERROR_UNEXPECTED_RESPONSE
703 ERROR_INTERACTIVE_MODE
704 ERROR_BAD_CALLBACK_NUMBER
705 ERROR_INVALID_AUTH_STATE
706 ERROR_WRITING_INITBPS
707 ERROR_X25_DIAGNOSTIC
708 ERROR_ACCT_EXPIRED
709 ERROR_CHANGING_PASSWORD
710 ERROR_OVERRUN
711 ERROR_RASMAN_CANNOT_INITIALIZE
712 ERROR_BIPLEX_PORT_NOT_AVAILABLE
713 ERROR_NO_ACTIVE_ISDN_LINES
714 ERROR_NO_ISDN_CHANNELS_AVAILABLE
715 ERROR_TOO_MANY_LINE_ERRORS
716 ERROR_IP_CONFIGURATION
717 ERROR_NO_IP_ADDRESSES
718 ERROR_PPP_TIMEOUT
719 ERROR_PPP_REMOTE_TERMINATED
720 ERROR_PPP_NO_PROTOCOLS_CONFIGURED
721 ERROR_PPP_NO_RESPONSE
722 ERROR_PPP_INVALID_PACKET
723 ERROR_PHONE_NUMBER_TOO_LONG
724 ERROR_IPXCP_NO_DIALOUT_CONFIGURED
725 ERROR_IPXCP_NO_DIALIN_CONFIGURED
726 ERROR_IPXCP_DIALOUT_ALREADY_ACTIVE
727 ERROR_ACCESSING_TCPCFGDLL
728 ERROR_NO_IP_RAS_ADAPTER
729 ERROR_SLIP_REQUIRES_IP
730 ERROR_PROJECTION_NOT_COMPLETE
731 ERROR_PROTOCOL_NOT_CONFIGURED
732 ERROR_PPP_NOT_CONVERGING
733 ERROR_PPP_CP_REJECTED
734 ERROR_PPP_LCP_TERMINATED
735 ERROR_PPP_REQUIRED_ADDRESS_REJECTED
736 ERROR_PPP_NCP_TERMINATED
737 ERROR_PPP_LOOPBACK_DETECTED
738 ERROR_PPP_NO_ADDRESS_ASSIGNED
739 ERROR_CANNOT_USE_LOGON_CREDENTIALS
740 ERROR_TAPI_CONFIGURATION
741 ERROR_NO_LOCAL_ENCRYPTION
742 ERROR_NO_REMOTE_ENCRYPTION
743 ERROR_REMOTE_REQUIRES_ENCRYPTION
744 ERROR_IPXCP_NET_NUMBER_CONFLICT
745 ERROR_INVALID_SMM
746 ERROR_SMM_UNINITIALIZED
747 ERROR_NO_MAC_FOR_PORT
748 ERROR_SMM_TIMEOUT
749 ERROR_BAD_PHONE_NUMBER
750 ERROR_WRONG_MODULE

©1996 by Graphical Dynamics, Inc. Company Confidential
Page 27 11/17/22


